

Other Duties As Assigned: Incretin Therapy Uses Outside Diabetes

Chris Terpening, PhD, PharmD, BCACP

Clinical Associate Professor Depts of Family Medicine & Clinical Pharmacy WVU Health Sciences Charleston

Faculty Disclosure

I have nothing to disclose concerning possible financial relationships with ineligible companies that may have a direct or indirect interest in the subject matter of this presentation.

I will be discussing off-label uses of certain medications during this presentation.

Objectives

- Comparatively review data underlying FDA-approved indications for incretin-based therapies beyond Type 2 diabetes
- Summarize clinical trial data that may support future indications for current incretin-based therapies
- Review data for investigational incretin-based combination therapies beyond Type 2 diabetes

Question 1

- The incretin effect was first clearly demonstrated in the:
 - 1930s
 - 1960s
 - 1980s
 - 2000s

Question 2

- In healthy adults, which of the following hormones has the greatest potency as an incretin?
 - GIP
 - GLP-1
 - GLP-2
 - Amylin

Incretin History

- In early 1900s, it was noted that extracts from the intestine could lower urinary glucose in patients with diabetes, leading to an inference of factors derived there
- In the 1960s, it was noted that insulin levels rose more when glucose was delivered orally than when given intravenously
 - Labelled the incretin effect

Incretin Effect

Drucker & Holst, Diabetalogia 2023: 66; 1765-79

Incretins

- GIP (glucose-dependent insulinotropic polypeptide)
 - Isolated in early 1970s, and demonstrated potent incretin effectiveness
 - Later shown to be largely ineffective in patients with diabetes
- GLP-1 (glucagon-like peptide 1)
 - Identified in late 1980s as a product of differential cleavage of the proglucagon peptide
 - While less potent as an incretin, its activity was retained in patients with diabetes

Comparison (Pancreatic Effects)

GIP

- Secreted from K cells in proximal small intestine only in response to food
- Stimulates insulin when glucose is normal or high
- Stimulates glucagon secretion when glucose is normal or low

GLP-1

- Secreted from L cells in distal small intestine only in response to food
- Stimulates insulin when glucose is normal or high
- Inhibits glucagon secretion when glucose is normal or high

Extra-pancreatic Comparison

GIP

- Does not alter gastric motility
- Does not induce satiety through central nervous system activation at physiologic levels
- In the presence of insulin, promotes fatty acid uptake and deposition in adipose tissue

GLP-1

- Slows gastric motility (afferent vagus stimulation?)
- Does induce satiety through central nervous system activation (indirect, direct?)
- May indirectly increase fatty acid oxidation through augmentation of sympathetic output

Incretin-Based Therapies

Question 3

- Which of the following has the LEAST effect on GIP receptor binding?
 - Sitagliptin
 - Dulaglutide
 - Tirzepatide
 - None have an impact

DPP4 Inhibitor Mechanism of Action

- DPP4 rapidly breaks down both GIP and GLP-1
 - GIP half-life 3-4 minutes
 - GLP-1 half-life 1-2 minutes
- Inhibition of DPP4 roughly doubles the half-life, but that is still short as renal clearance of the incretins is unaffected

- DPP4 inhibitors modestly increase incretin levels in the short term, but they remain in or near the physiologic range
 - Possible anti-inflammatory effects??

GLP-1 Receptor Agonist Mechanism of Action

- Are all derivatives of either exendin-4 or human GLP-1
- Bind to GLP-1 receptors equivalently, but have markedly longer half-lives than endogenous GLP-1
 - Ranges from 2-3 hours to roughly one week

• Achieves supraphysiologic circulating levels that exaggerate the physiologic responses

Tirzepatide Mechanism of Action

- A co-agonist at both the GIP and GLP-1 receptors
- Derived from human GIP, with additional modifications to add GLP-1 receptor binding and markedly slowed DPP4 breakdown
 - Formally, binds GIP receptor with much higher affinity than GLP-1 receptor in *in vitro* studies
 - However, does not stimulate GLP-1 receptor internalization and breakdown, so GLP-1 effect is quite pronounced
- Ultimately, the contributions of each receptor remains unclear

Novikoff & Muller, Physiology 2024: 39; 142-56

Obesity

Question 4

- Which of the following yielded the largest average percent body weight reduction in clinical trials of obese patients?
 - Linagliptin
 - Exenatide ER
 - Liraglutide
 - Tirzepatide

Question 5

- Tachyphylaxis generally develops to all of the following GLP-1 RA effects EXCEPT:
 - Nausea
 - Delayed gastric emptying
 - Weight loss
 - None of the above

DPP4 Inhibitor Weight Loss in DM trials

- Sitagliptin (24 weeks)
 - -0.6 kg
- Saxagliptin (24 weeks)
 - -1.1 kg
- Linagliptin (24 weeks)
 - -0.4 kg
- Alogliptin (26 weeks)
 - +0.68 kg

Aschner, et al. Diabetes Obes Metab 2010; 12: 252-61, Jadzinski, et al. Diabetes Obes Metab 2009; 11: 611-22 Taskinen, et al. Diabetes Obes Metab 2011; 13: 65-74, Pratley, et al. Diabetes Obes Metab 2009; 11: 167-76

GLP-1 RA Weight Loss in DM Trials

- Exenatide IR -3.1 kg @ 24 weeks
- Exenatide ER -2.3 kg @ 24 weeks
- *Lixisenatide -2.0 kg @ 24 weeks
- Liraglutide -3.5 kg @ 26 weeks
- *Albiglutide -0.86 kg@ 52 weeks
- Dulaglutide -2.3 kg @ 26 weeks
- Semaglutide SC -4.5 kg @ 30 weeks

• Semaglutide PO – -4.4 kg @ 26 weeks

Moretto, et al. Clin Ther 2008:30;1448-60, Blevins, et al. JCEM 2011:96;1301-10, Ahren, et al. Diabetes Care 2013;36:2543-50, Ahmann, et al. Diabetes Obes Metab 2015;17:1056-64, Nauck, et al. Diabetologia 2016;59:266-74, Umpierrez, et al. Diabetes Care 2014;37:2168-76, Sorli, et al. Lancet Diab Endo 2017;5:251-260, Pratley, et al. Lancet 2019;394:39-50

Incretin Weight Loss in Obesity Trials

	Liraglutide SCALE	Semaglutide STEP 1	Tirzepatide SURMOUNT
Wt. loss (kg)	-5.6 kg	-12.7 kg	-21.2 kg
% Wt loss	-5.4%	-12.4%	-17.8%
>5% Wt loss	63.2% vs 27.1%	86.4% vs 31.5%	90.9% vs 34.5%
>10% Wt loss	33.1% vs 10.6%	69.1% vs 12.0%	83.5% vs 18.8%
>15% Wt loss		50.5% vs 4.9%	70.6% vs 8.8%
>20% Wt loss		32.0% vs 1.7%	56.7% vs 3.1%

(SCALE) Pi-Sunyer, et al. NEJM 2015:373;11-22, (STEP) Wilding, et al. NEJM 2021:384;989-1002, (SURMOUNT) Jastreboff, et al. NEJM 2022:387;205-16

Why Better Results in Obesity Trials?

- Not diabetes patients
 - Not trying to lose weight in diabetes trials
 - There may be some degree of resistance to hormonal effects in patients with diabetes
- Higher doses
 - While A1c effects have a fairly flat dose-response curve, weight loss does respond better with higher doses
 - Probably secondary to better effects in the brain on satiety with higher doses
- Longer duration
 - Weight loss plateau is much later than A1c plateau

Tirzepatide Dose-Response

Jastreboff, et al. NEJM 2022:387;205-16

Downsides of Incretin Treatment

- COST!!!
- AVAILABILITY!
- Durability
- Nausea/Vomiting
 - Class effect that is also dose-dependent in the short term
 - Not strictly due to delayed gastric emptying
 - Tachyphylaxis does often occur when slowly titrated
- Other GI
 - Gastroparesis, though tachyphylaxis also occurs with slow titration
 - Diarrhea/constipation

From: Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial

JAMA. 2021;325(14):1414-1425. doi:10.1001/jama.2021.3224

Date of download: 9/12/2024

Copyright 2021 American Medical Association. All Rights Reserved.

Why Is Tirzepatide Better?

- GIP additive/synergistic?
- GIP effect enables tolerating higher GLP-1 RA doses?
 - May reduce the nausea?
- Perhaps a "super-GLP-1 RA"?

GIP Effects in Obesity

- By promoting fat deposition, GIP may promote obesity
 - In mouse models, receptor knock-outs or antagonists prevent weight gain in obese models, and promote modest weight loss
 - Infusions of GIP are associated with increased release of proinflammatory cytokines from adipocytes
- Stimulation of GIP receptors in the hypothalamus may reduce food intake and body weight
 - Intracerebroventricular or peripheral infusion of GIP achieves this in mouse models, and potentiates GLP-1 induced weight loss
 - Inhibitory signaling may also reduce chemoreceptor nausea

Liu, Frontiers Endcrinol 2024:15;1431292

Bottom Line

• GLP-1 RA or co-agonists are clearly the most effective weight loss drugs we have ever had

• Their efficacy begins to rival bariatric surgery, but requires long term use for maintenance of weight loss

Cardiovascular Risk Reduction

Question 6

- True or False. All GLP-1 RAs have demonstrated reductions in Major Adverse Cardiovascular Events (MACE) in high-risk patients with type 2 diabetes.
 - True
 - False

Question 7

- Which of the following drugs has demonstrated reductions in MACE in high-risk patients WITHOUT Type 2 diabetes?
 - Tirzepatide
 - Liraglutide
 - Semaglutide SC
 - Sitagliptin

Incretins in Cardiovascular Disease

- GLP-1 RA use is associated with blood pressure reduction in hypertensive patients
 - Weight loss may be additive, but effects occur even in absence
 - Effects on receptors in kidney to reduce fibrosis and increase sodium excretion?
- Some evidence of reduced platelet aggregation in patients with obesity treated with liraglutide
- Both GIP and GLP-1 appear to reduce inflammation in vascular tissue

The Rosiglitazone Debacle

- For decades, the FDA approved diabetes medications solely based on their ability to lower blood glucose
- In 2007, a meta-analysis of rosiglitazone suggested that its use increased the risk of myocardial infarction (MI) and cardiovascular (CV) death
- Much debate ensued...
- Eventually, the FDA mandated that drugs for diabetes had to demonstrate CV safety, even in high-risk populations, before approval

Nissen & Wolski, NEJM 2007;356:2457-2471

DPP4 Inhibitors

	Saxagliptin	Alogliptin	Sitagliptin	Linagliptin
	SAVOR-TIMI	EXAMINE	TECOS	CARMELINA
	(2013)	(2013)	(2015)	(2019)
N, duration	16492 pts	5380 pts	14671 pts	6979 pts
	2.1 yrs	1.5 yrs	3.0 yrs	2.2 yrs
Inclusion	DM + CVD or risk	DM, recent ACS	DM + CVD	DM + CVD/renal risk
Primary	3 pt MACE	3 pt MACE	4 pt MACE	3 pt MACE
Endpoint	HR 1.00 (0.89-1.12)	HR 0.96 (p=0.32)	HR 0.98 (0.89-1.08)	HR 1.02 (0.89-1.17)

(SAVOR) Scirica, et al. NEJM 2013;369:1317-26, (EXAMINE) White, et al. NEJM 2013;369:1327-35, (TECOS) Green, et al. NEJM 2015;373:232-42, (CARMELINA) Rosenstock, et al. JAMA. 2019;321(1):69-79

DPP4 Inhibitors

	Saxagliptin	Alogliptin	Sitagliptin	Linagliptin
	SAVOR-TIMI	EXAMINE	TECOS	CARMELINA
	(2013)	(2013)	(2015)	(2018)
CV Death	HR 1.03	HR 0.85	HR 1.03	HR 0.96
	(0.87-1.22)	(0.66-1.10)	(0.89-1.19)	(0.81-1.14)
MI	HR 0.95	HR 1.08	HR 0.95	HR 1.12
	(0.80-1.12)	(0.88-1.33)	(0.81-1.11)	(0.90-1.40)
Stroke	HR 1.11	HR 0.91	HR 0.97	HR 0.91
	(0.88-1.39)	(0.55-1.50)	(0.79-1.19)	(0.67-1.23)
HF Hosp	HR 1.27	HR 1.19	HR 1.00	HR 0.90
	(1.07-1.51)	(0.90-1.58)	(0.83-1.20)	(0.74-1.08)

(SAVOR) Scirica, et al. NEJM 2013;369:1317-26, (EXAMINE) White, et al. NEJM 2013;369:1327-35, (TECOS) Green, et al. NEJM 2015;373:232-42, (CARMELINA) Rosenstock, et al. JAMA. 2019;321(1):69-79

DPP4 Inhibitor Bottom Line

- No cardiovascular benefit from any of them
- No cardiovascular risk either, based on primary endpoint
- Heart failure risk is an open question
 - Are saxagliptin/alogliptin actually worse, or just one of those things with secondary endpoints?
 - Labels all have HF as warning, but not contraindication
 - Absolute increases in risk are smaller than risk seen with TZDs
GLP-1 RA

- -atides (exendin-4 derivatives)
 - Exenatide
 - Lixisenatide*
- -glutides (GLP-1 derivatives)
 - Liraglutide
 - Dulaglutide
 - Semaglutide
 - Albiglutide*

-atides

	Lixisenatide ELIXA (2015)	Exenatide ER EXSCEL (2017)
N, duration	6068 pts 2.1 yrs	14752 pts 3.2 yrs
Inclusion	DM + recent ACS	DM ± CVD
Primary Endpoint	4 pt MACE HR 1.02 (0.89-1.17)	3 pt MACE HR 0.91 (0.83-1.00)

(ELIXA) Pfeffer, et al. NEJM 2015;373: 2247-57, (EXSCEL) Holman, et al. NEJM 2017;377:1228-1239

-atides

	Lixisenatide ELIXA (2015)	Exenatide ER EXSCEL (2017)
CV Death	HR 0.98 (0.78-1.22)	HR 0.88 (0.76-1.02)
MI	HR 1.03 (0.87-1.22)	HR 0.97 (0.85-1.10)
Stroke	HR 1.12 (0.79-1.58)	HR 0.85 (0.70-1.03)
HF Hosp	HR 0.96 (0.75-1.23)	HR 0.94 (0.78-1.13)

(ELIXA) Pfeffer, et al. NEJM 2015;373: 2247-57, (EXSCEL) Holman, et al. NEJM 2017;377:1228-39

-Glutides

	Liraglutide	Semaglutide	Albiglutide	Dulaglutide
	LEADER	SUSTAIN-6	HARMONY	REWIND
	(2016)	(2016)	(2018)	(2019)
N, duration	9340 pts	3297 pts	9463 pts	9901 pts
	3.8 yrs	2.1 yrs	1.6 yrs	5.4 yrs
Inclusion	DM + cardio/renal dz or risk	DM + cardio/renal dz or risk	DM + CVD	DM + CVD or risk
Primary	3 pt MACE	3 pt MACE	3 pt MACE	3 pt MACE
Endpoint	HR 0.87 (0.78-0.97)	HR 0.74 (0.58-0.95)	HR 0.78 (0.68-0.90)	HR 0.88 (0.79-0.99)

(LEADER) Marso, et al. NEJM 2016;375:311-22, (SUSTAIN-6) Marso et al. NEJM 2016;375:1834-44, (HARMONY) Hernandez, et al. Lancet 2018;392:1519-29, (REWIND) Gerstein, et al. Lancet 2019;394:121-30

-Glutides

	Liraglutide	Semaglutide	Albiglutide	Dulaglutide
	LEADER	SUSTAIN-6	HARMONY	REWIND
	(2016)	(2016)	(2018)	(2019)
CV Death	HR 0.78	HR 0.98	HR 0.93	HR 0.91
	(0.66-0.93)	(0.65-1.48)	(0.73-1.19)	(0.78-1.06)
MI	HR 0.86	HR 0.74	HR 0.75	HR 0.96
	(0.73-1.00)	(0.51-1.08)	(0.61-0.90)	(0.79-1.15)
Stroke	HR 0.86	HR 0.61	HR 0.86	HR 0.76
	(0.71-1.06)	(0.38-0.99)	(0.66-1.14)	(0.61-0.95)
HF Hosp	HR 0.87 (0.73-1.05)	HR 1.11 (0.77-1.61)		HR 0.93 (0.77-1.12)

(LEADER) Marso, et al. NEJM 2016;375:311-22, (SUSTAIN-6) Marso et al. NEJM 2016;375:1834-44, (HARMONY) Hernandez, et al. Lancet 2018;392:1519-29, (REWIND) Gerstein, et al. Lancet 2019;394:121-30

Semaglutide PO

	Oral Semaglutide PIONEER (2019)		Oral Semaglutide PIONEER (2019)
N, duration	3183 15.9 mo	CV Death	HR 0.49 (0.27-0.92)
Inclusion	DM + cardio/renal dz or risk	MI	HR 1.18 (0.73-1.90)
Primary Endpoint	3 pt MACE HR 0.79 (0.57-1.11)	Stroke	HR 0.74 (0.35-1.57)
		HF Hosp	HR 0.86 (0.48-1.55)

Semaglutide in Obesity

	Semaglutide SC SELECT (2023)		Semaglutide SC SELECT (2023)
N, duration	17604 34.2 mo	CV Death	HR 0.85 (0.71-1.01)
Inclusion	BMI 27+ and ASCVD	MI	HR 0.72 (0.61-0.85)
Primary Endpoint	3 pt MACE HR 0.80 (0.72-0.90)	Stroke	HR 0.93 (0.74-1.15)
		HF Hosp	HR 0.79 (0.60-1.03)

Lincoff, et al. NEJM 2023;389:2221-2232

GLP-1 RA Bottom Line

- -glutides consistently reduce 3 pt MACE, typically with some reduction in each endpoint. All current injectible ones have FDA approval for CV risk reduction in patients with diabetes.
 - Semaglutide po, not quite
 - -atides do not have indication, though exenatide got close
- Semaglutide sc is the only one approved for CV risk reduction outside of patients with diabetes
- No clear benefit or risk for HF
- Note that albiglutide and dulaglutide achieved reductions in MACE without significant weight loss

Tirzepatide?

- SURPASS-CVOT is underway
 - Comparing itself with dulaglutide in non-inferiority trial
 - Has enrolled 13,299 patients with diabetes and high CV risk
 - Maybe completed in 2025?
 - Also SURMOUNT-MMO (in obesity)
- No signal of increased events in either diabetes or obesity trials

Possible New Indications

Question 8

- Which of the following drugs has demonstrated reductions in hard renal composite endpoints, specifically in patients with diabetic kidney disease?
 - Tirzepatide
 - Semaglutide SC
 - Dulaglutide
 - Liraglutide

Question 9

- In clinical trials to date, which of the following drugs has shown the greatest potential benefit for sleep apnea?
 - Liraglutide
 - Semaglutide SC
 - Exenatide ER
 - Tirzepatide

Heart Failure with Preserved Ejection Fraction

- For a long time, obesity was seen mostly as a comorbidity for heart failure, especially with preserved ejection fraction (HFpEF). Evidence for a causative role is accumulating.
 - Mechanical effects on heart
 - Hypertrophy, epicardial fat limiting filling
 - Neurohormonal effects on heart
 - Proinflammatory cytokines from visceral fat promote activation of sympathetic and RAAS systems which can result in remodeling
 - Deposition of fat in organs impairs function
 - Fluid retention in kidneys, impaired muscle function

Heart Failure with Preserved Ejection Fraction

	Semaglutide sc STEP-HFpEF (2023)	Semaglutide sc STEP-HFpEF DM (2024)		Semaglutide sc STEP-HFpEF (2023)	Semaglutide sc STEP-HFpEF DM (2024)
N, duration	529 52 weeks	616 52 weeks	Symptom score	7.8 (4.8-10.9)	7.3 (4.1-10.4)
Inclusion	BMI 30+ & HFpEF	BMI 30+ & HFpEF & DM	Body weight	-10.7% (-11.9 to -9.4%)	-6.4% (-7.5 to -5.2%)
Primary Endpoint	Change in Symptoms & Body weight	Change in Symptoms & Body weight			

Kosiborod, et al. NEJM 2023;389:1069-84, Kosiborod, et al. NEJM 2024;390:1394-1407

Chronic Kidney Disease (CKD)

- Cardiovascular disease and chronic kidney disease share many common risk factors, and the presence of one increases the risk of developing the other
 - Obesity is one of those common risk factors, diabetes another
 - Cardiovascular-Kidney-Metabolic (CKM) Syndrome is now being promulgated by the American Heart Association
- Unclear if there are direct effects of incretins on the kidney
 - Potential for reduction in inflammation and fibrosis

CKM Conceptual Diagram

Ndumele, et al. Circulation 2023;148:1636-64

CKD Endpoints in GLP-1 RA CV Trials

- LEADER (liraglutide)
 - Endpoint composite of new macroalbuminuria, doubling serum creatinine, end-stage renal disease, renal death
 - 15.0% vs 19.0% (HR 0.78; CI 0.67-0.92)
- SUSTAIN-6 (semaglutide)
 - Endpoint composite of new macroalbuminuria, doubling serum creatinine with CrCl<45, and dialysis
 - 3.8% vs 6.1% (HR 0.64; CI 0.46-0.88)
- REWIND (dulaglutide)
 - Endpoint composite of new macroalbuminuria, eGFR decline of 30+%, and dialysis
 - 17.1% vs 19.6% (HR 0.85; CI 0.77-0.93)

Mann, et al. NEJM 2017;377:839-48, Marso et al. NEJM 2016;375:1834-44, Gerstein, et al. Lancet 2019;394:121-30

Semaglutide in Patients with CKD

	Semaglutide sc FLOW (2024)		Semaglutide sc FLOW (2024)
N, duration	3533 pts 3.4 yrs	Primary	HR 0.76 (0.66-0.88)
Inclusion	DM + CKD (eGFR 25- 75, with varying albuminuria)	Annual change eGFR	-2.19* vs -3.36
	composite of the onset of kidney failure, at least a	Change UACR (vs baseline at 2 yr)	0.60* vs 0.88
Primary Endpoint	50% reduction in the eGFR, or death from kidney-related or	MACE	12.0% vs 14.4% (HR 0.82*)
	cardiovascular causes		

Perkovic, et al. NEJM 2024;391:109-21

Obstructive Sleep Apnea (OSA)

- Obesity is a major risk factor for OSA
- Diabetes, even without obesity, is also a major risk factor
- Positive Airway Pressure (PAP) improves apnea-hypopnea index (API) and subsequent daytime sleepiness, but is highly dependent on adherence
- Various surgical interventions, including bariatric surgery, and a few devices can help, but no medications are approved

Incretins in Patients with OSA

	Liraglutide sc SCALE (2016)		Liraglutide sc SCALE (2016)
N, duration	359 pts 32 weeks	AHI Change	-6.1/hr [12.4%] (-11.1 to -1.2)
Inclusion	Obesity + mod-severe hypopnea (15+ events/hr)	Body weight	-4.9 kg [-4.2%] (-6.2 to -3.7)
Primary Endpoint	Change in AHI		

Blackman, et al. Int J Obes 2016;40:1310-19

Incretins in Patients with OSA

	Tirzepatide sc SURMOUNT-OSA (2024)		SURMOUNT -OSA 1 (2024)	SURMOUNT -OSA 2 (2024)
N, duration	234/235 pts 52 weeks	AHI Change	-20.0 [47.7%] (-25.8 to -14.2)	-23.8 [56.2%] (-29.6 to -17.9)
Inclusion	Obesity + mod-severe hypopnea ± PAP	Body weight	-16.1 % (-18.0 to -14.2)	-17.3% (-19.3 to -15.3)
Primary Endpoint	Change in AHI			

Malhotra, et al. NEJM 2024; DOI: 10.1056/NEJMoa2404881

Metabolic-Dysfunction Associated Steatotic Liver Disease (MASLD)

- Often defined as evidence of liver damage (increased ALT) in combination with at least one element of metabolic syndrome
 - Increased fat deposition in liver, accompanied by inflammation and fibrosis
 - By 2040, half of adults world-wide may have MASLD
 - Can progress to Metabolic-Associated Steatohepatitis (MASH), then to cirrhosis, and then to hepatocellular carcinoma
- While no GLP-1 or GIP receptors in the liver, benefits may be seen with weight loss or reduction in inflammation

Metabolic-Dysfunction Associated Steatotic Liver Disease (MASLD)

- LEAN (liraglutide, diabetes doses)
 - Endpoint histological improvement without worsening fibrosis
 - 39% vs 9%, p=0.019
 - No significant difference in transaminases or inflammation
- Newsome, et al. (daily semaglutide)
 - Endpoint resolution of MASH without worsening fibrosis
 - 0.1 mg 40%
 - 0.2 mg 36%
 - 0.4 mg 59% (p<0.001)
 - Placebo 17%
 - 0.4 mg dose did see significant reductions in transaminases vs placebo

Armstrong, et al. Lancet 2016;387:679-90, Newsome, et al. NEJM 2021;384:1113-24

Parkinson's Disease (PD)

- Parkinson's is a progressive neurologic disorder marked by destruction of dopaminergic neurons in the CNS.
 - Results in motor symptoms, as well as autonomic and cognitive symptoms over time
 - Diabetes is a risk factor for developing PD. Insulin resistance is associated with increased α -synuclein aggregates
- Observationally, use of DPP4 inhibitors and GLP-1 RA is associated with significantly reduced risk of PD
- GLP-1 receptors are found in the brain. Could potentially reduce neuroinflammation directly or through increased insulin

Brauer, et al. Brain 2020;10: 3067-76, Standaert, NEJM 2024;390:1233-34

Parkinson's Disease

	Exenatide ER EXENATIDE-PD (2017)	Lixisenatide LIXIPARK (2024)		Exenatide ER EXENATIDE-PD (2017)	Lixisenatide LIXIPARK (2024)
N, duration	60	156	Movement	-4.3	-3.08
	60 weeks	12 mo	score (end tx)	(-7.1 to -1.6)	(-0.86 to -5.30)
Inclusion	Mild-mod PD on	Mild-mod PD on	Movement	-3.5	-3.0
	DA tx	DA tx	score (post-	(-6.7 to -0.3)	(-0.1 to -5.8)
Primary Endpoint	Change in movement score after 12 week washout	Change in movement score at 1 yr	washout)	(0.7 to 0.0)	

Athauda, et al. Lancet 2017;390:1664-75, Meissner, et al. NEJM 2024;390:1176-85

Parkinson's Disease

Athauda, et al. Lancet 2017;390:1664-75

Substance Use Disorders

- Satiety is intertwined with reward pathways in the brain
- Various animal models have indicated reductions in substance abuse with the use of GLP-1 RA
 - Alcohol, nicotine, cocaine, opioids...
- Observational studies, case series, and anecdotal data support benefits GLP-1 RA for reductions in smoking and alcohol consumption in humans

Substance Use Disorders

- Klausen, et al.
 - In 127 patients with alcohol use disorder randomized to exenatide ER or placebo for 26 weeks, there was a reduction in heavy drinking days and total alcohol intake, but no difference between groups
 - Potential benefit in those with BMI 30+
- Yammine, et al.
 - In 84 overweight smokers, exenatide ER increased smoking abstinence over placebo (46.3% vs 26.8%)
- Lengsfeld, et al
 - In 255 smokers, dulaglutide did not improve smoking cessation over placebo (63% vs 65%), but did prevent weight gain

Klausen et al., JCI Insight 2022;7:e159863, Yammine, et al. Nicot Tob Res 2021;23:1682-90, Lengsfeld, et al. EClinicalMedicine 2023;57; doi: 10.1016/j.eclinm.2023.10186

Additional Combinations in Trials

Question 10

- Which of the following compounds has proven problematic for the treatment of obesity?
 - GIP antagonist
 - Amylin agonist
 - Glucagon antagonist
 - Glucagon agonist

GLP-1 RA + GIP Antagonist

- Why consider a GIP antagonist if an agonist works so well?
 - GIP does promote fat accumulation in adipocytes
 - GIP receptor knockout mice are protected from weight gain
- Maridebart cafraglutide
 - Anti-GIP receptor antibody linked to two GLP-1 analogue peptides
 - Mean half-life approximately 2 weeks
 - Phase 1 in humans showed significant weight loss
 - Single 840 mg dose -8.2% at day 92 (appears same at day 150)
 - Three doses of 420 mg q4w -14.5% at day 85 (-11.5% 150d post last dose)
 - Safety appears similar to other GLP-1 RA (mostly nausea)

Veniant, et al. Nat Metab 2024;6:290-303

Amylin Additives

- Amylin is made by β -cells of pancreas, and co-excreted with insulin. Also synthesized in areas of the brain.
 - Pramlintide is an analogue currently approved, for both type 1 & type 2 diabetes
- Effects are qualitatively similar to GLP-1
 - Increase satiety, decrease gastric emptying and glucagon release
 - Also appears to have both central and peripheral effects
 - May potentially increase leptin sensitivity?
- Pramlintide offers very modest weight loss and A1c benefits
 - Relatively short half-life (~ 45 min)

Dehestani, et al. J Obes Metab Syndr 2021;30:320-5, Holst, Nature Metab 2024; doi: 10.1038/s42255-024-01113-9

Amycretin

- Novel unimolecular amylin and GLP-1 receptor agonist
 - Oral dosage form
- Phase 1 data
 - Enrolled overweight patients without diabetes
 - Different arms with single and multiple ascending doses
 - Weight loss at 12 weeks
 - Amycretin 50 mg daily 10.4%
 - Amycretin 2x50 mg daily 13.1%
 - Placebo 1.2%
 - Safety frequent, dose-dependent nausea

https://www.medscape.com/viewarticle/remarkable-weight-loss-seen-novel-oral-combination-safe-and-2024a1000glt

Cagrilintide

- Long-acting amylin analog
- Phase 2 Dose-ranging study complete in obesity
 - 0.3 mg to 4.5 mg sc weekly, compared body weight reduction to liraglutide 3.0 mg daily and placebo, administered over 26 weeks
 - Cagrilintide -6.0% to -10.8%
 - Liraglutide -9.0%
 - Placebo -3.0%
 - For 4.5 mg dose:
 - 5+% weight loss 89%
 - 10+% weight loss 54%

Lau, et al. Lancet 2021;398:2160-72

Cagrilintide + Semaglutide (CagriSema)

- Phase 2 study complete for type 2 DM (32 weeks)
 - 2.4 mg cagrilintide, 2.4 mg semaglutide, or combo given weekly
 - Pts with BMI 27+ and A1c 7.5-10% on metformin ± SGLT2i

	Avg A1c reduction	% A1c <7	Avg % weight loss	10% weight loss
Cagrilintide (n=30)	-0.9%	33%	-8.1%	23%
Semaglutide (n=31)	-1.8%	69%	-5.1%	14%
CagriSema (n=31)	-2.2%	89%	-15.6%	71%

Frias, et al. Lancet 2021;402:720-30

Glucagon Additives

- Glucagon stimulates glucose release from the liver by enhancing glycogenolysis and increasing gluconeogenesis...
- It also promotes amino acid metabolism and lipid metabolism in the liver
 - Appears to markedly reduce appetite and increase energy expenditure, and may increase insulin sensitivity...
- Glucagon antagonists resulted in:
 - Decreased A1c, but also hyperglucagon secretion resulting from hyperplasia of alpha cells
 - Marked increases in circulating amino acids and LDL, as well as steatosis of the liver, yielding elevated transaminases

Holst, Nature Metab 2024; doi: 10.1038/s42255-024-01113-9, Novikoff & Muller, Peptides 2023;165:171003
Mazdutide (GLP-1/Glucagon coagonist)

- Diabetes (phase II)
 - Doses ranged from 3-6 mg weekly, given over 20 weeks
 - A1c reduced by -1.41% to -1.67%
 - Dulaglutide 1.5 mg -1.35%, placebo +0.03%
 - Body weight reduced -4.1% to -7.1%
 - Dulaglutide 2.7% and placebo -1.4%
- Obesity (phase II)
 - Doses ranged from 3-6 mg weekly, given over 24 weeks
 - Body weight reduced -6.7% to -11.3%
 - Placebo +1.0%

Zhang, et al. Diabetes Care 2024;47:160-68, Ji, et al. Nat Commun 2023;14:8289

Survodutide (GLP-1/Glucagon coagonist)

- Diabetes (phase II)
 - Doses ranged from 0.3 to 2.7 mg weekly or 1.2 to 1.8 mg BIW (16 w)
 - A1c reduced by -0.91% to -1.71%
 - Semaglutide 1 mg -1.46%, placebo -0.15%
 - Body weight reduced -2.5% to -8.7%
 - Semaglutide -5.3%, placebo -0.8%
- Obesity (phase II)
 - Doses ranged from 0.6 to 4.8 mg weekly (46 weeks)
 - Body weight reduced -6.2% to -14.9%
 - Placebo -2.8%

Bluher, et al. Diabetalogia 2024;67:470-82, le Roux, et al. Lancet Diabet Endocrinol 2024;12:162-73

Survodutide (GLP-1/Glucagon coagonist)

- MASH & Fibrosis (phase II)
 - Doses ranged from 2.4 to 6 mg weekly (48 weeks)
 - Reduction in MASH with no worse fibrosis in 47% to 62%
 - placebo 14%
 - Decrease liver fat by 30+% in 57-63%
 - placebo 14%

Retatrutide (GLP-1/GIP/Glucagon tri-agonist)

- Diabetes (phase II)
 - Doses ranged from 0.5 to 12 mg weekly over 36 weeks
 - A1c at 24 weeks reduced by -0.43 to -2.02%
 - Dulaglutide 1.5 mg -1.41%, placebo -0.01%
 - Body weight at 36 weeks reduced -3.19% to -16.94%
 - Dulaglutide -2.02% and placebo -3.00%
- Obesity (phase II)
 - Doses ranged from 1-12 mg weekly, given over 48 weeks
 - Body weight at 24 weeks reduced -7.2% to -17.5%
 - Placebo -1.6%
 - Body weight at 48 weeks reduced -8.7% to -24.2%
 - Placebo -2.1%

Rosenstock, et al. Lancet 2023;402:529-44, Jastreboff, et al. NEJM 2024;289:514-26

Retatrutide (GLP-1/GIP/Glucagon tri-agonist)

Jastreboff, et al. NEJM 2024;289:514-26

Summary

- While incretins were initially defined by their ability to increase insulin secretion in response to food, they have direct and indirect effects on numerous other organs, especially the brain
- GLP-1(±) RAs have varying effects on obesity, with some achieving very significant benefits
- GLP-1 RAs have demonstrated mostly consistent benefits for cardiovascular event reduction in patients with diabetes, even in the absence of weight loss
 - We are starting to see those benefits expanded to patients without diabetes

Summary

- In early clinical trials, GLP-1 RAs have shown strong benefits in those with CKD, OSA, and MASLD
 - Potential benefits in other areas, including certain neurologic conditions
- While tirzepatide, as a dual agonist, is already approved and very effective, combination of GLP-1 agonism with other metabolic hormones is developing a pipeline of potential new drugs for diabetes, obesity, and MASLD.

References

- Novikoff & Muller, Physiology 2024: 39; 142-56
- Drucker & Holst, Diabetalogia 2023: 66; 1765-79
- Nauk, et al. Diabetes Obes Metab 2021: 23(Suppl 3); 5-29
- Aschner, et al. Diabetes Obes Metab 2010; 12: 252-61
- Jadzinski, et al. Diabetes Obes Metab 2009; 11: 611-22
- Taskinen, et al. Diabetes Obes Metab 2011; 13: 65-74
- Pratley, et al. Diabetes Obes Metab 2009; 11: 167-76

More References

- Moretto, et al. Clin Ther 2008:30;1448-60
- Blevins, et al. JCEM 2011:96;1301-10
- Ahren, et al. Diabetes Care 2013;36:2543-50,
- Ahmann, et al. Diabetes Obes Metab 2015;17:1056-64
- Nauck, et al. Diabetologia 2016;59:266-74
- Umpierrez, et al. Diabetes Care 2014;37:2168-76
- Sorli, et al. Lancet Diab Endo 2017;5:251-260
- Pratley, et al. Lancet 2019;394:39-50

More References

- Pi-Sunyer, et al. NEJM 2015:373;11-22
- Wilding, et al. NEJM 2021:384;989-1002
- Jastreboff, et al. NEJM 2022:387;205-16
- Rubino, et al. JAMA 2021;325:1414-1425
- Liu, Frontiers Endocrinol 2024:15;1431292
- Nissen & Wolski, NEJM 2007;356:2457-2471
- Scirica, et al. NEJM 2013;369:1317-26
- White, et al. NEJM 2013;369:1327-35
- Green, et al. NEJM 2015;373:232-42
- Rosenstock, et al. JAMA. 2019;321:69-79

Still More References

- Pfeffer, et al. NEJM 2015;373: 2247-57
- Holman, et al. NEJM 2017;377:1228-1239
- Marso, et al. NEJM 2016;375:311-22
- Marso et al. NEJM 2016;375:1834-44
- Hernandez, et al. Lancet 2018;392:1519-29
- Gerstein, et al. Lancet 2019;394:121-30
- Husain, et al. NEJM 2019;381:841-51
- Lincoff, et al. NEJM 2023;389:2221-2232
- Nicholls, et al. Am Heart J 2024:267;1-11

More References

- Borloug, et al. Cardiovascular Research 2022;118:3434-50
- Kosiborod, et al. NEJM 2023;389:1069-84
- Kosiborod, et al. NEJM 2024;390:1394-1407
- Ndumele, et al. Circulation 2023;148:1636-64
- Mann, et al. NEJM 2017;377:839-48
- Perkovic, et al. NEJM 2024;391:109-21
- Blackman, et al. Int J Obes 2016;40:1310-19
- Malhotra, et al. NEJM 2024; DOI: 10.1056/NEJMoa2404881

More References... Sigh...

- Yanai, et al. Int J Mol Sci 2023;24:15473
- Athauda, et al. Lancet 2017;390:1664-75
- Meissner, et al. NEJM 2024;390:1176-85
- Leggio, et al. Nature Med 2023;29:2993-95
- Volkow & Xu, Addiction 2024; doi: 10.1111/add.16626
- Klausen et al., JCI Insight 2022;7:e159863
- Yammine, et al. Nicotine Tob Res 2021;23:1682-90,
- Lengsfeld, et al. EClinicalMedicine 2023;57; doi: 10.1016/j.eclinm.2023.10186

Oh, Good Lord...

- Veniant, et al. Nat Metab 2024;6:290-303
- Dehestani, et al. J Obes Metab Syndr 2021;30:320-5
- Holst, Nature Metab 2024; doi: 10.1038/s42255-024-01113-9
- https://www.medscape.com/viewarticle/remarkable-weightloss-seen-novel-oral-combination-safe-and-2024a1000glt (Accessed 9/18/24)
- Lau, et al. Lancet 2021;398:2160-72
- Frias, et al. Lancet 2021;402:720-30
- Novikoff & Muller, Peptides 2023;165:171003

Please Make It STOP!!!

- Zhang, et al. Diabetes Care 2024;47:160-68
- Ji, et al. Nat Commun 2023;14:8289
- Bluher, et al. Diabetalogia 2024;67:470-82
- le Roux, et al. Lancet Diabet Endocrinol 2024;12:162-73
- Sanyal, et al. NEJM 2024;391:311-19
- Rosenstock, et al. Lancet 2023;402:529-44
- Jastreboff, et al. NEJM 2024;289:514-26

Questions?

CE Evaluation Access Code

* * * * *

Capital Letters, No spaces, complete by ____

Note: CE credit will be reported to NABP CPE Monitor within 4-6 weeks

Contact Information

- Dr. Chris Terpening, PhD, PharmD
 - <u>cterpening@hsc.wvu.edu</u>